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Complexity and Approximability of Quantified and Stochastic 
Constraint Satisfaction Problems 

HARRY B. HUNT 111233 RICHARD E. STEARN? MADHAV V. MARATHE' 

April 25,2001 

Abstract 

Let D be an arbitrary (not necessarily finite) nonempty set, let C be a finite set of constant symbols 
denoting arbitrary elements of D, and let S be an arbitrary finite set of finite-arity relations on D .  We 
denote the problem of determining the satisfiability of finite conjunctions of relations in S applied to 
variables (to variables and symbols in C) by SAT(S) (by SATc(S).) Here, we study simultaneously the 
complexity of and the existence of efficient approximation algorithms for a number of variants of the 
problems SAT(S) and SATc(S), and for many different D, C, and S. These problem variants include 
decision and optimization problems, for formulas, quantified formulas stochastically-quantified formulas. 
We denote these problems by Q-SAT(S), MAX-Q-SAT(S), S-SAT(S), MAX-S-SAT(S) MAX-NSF- 
Q-SAT(S) and MAX-NSF-S-SAT(S). 

The main contribution is the development of a unified predictive theory for characterizing the the 
complexity of these problems. Our unified approach is based on the following basic two basic concepts: 
(i) strongly-local replacements/reductions and (ii) relational/algebraic representability. Let IC 2 2. Let S 
be a finite set of finite-arity relations on XI, with the following condition on S: All finite arity relations on 
CI ,  can be represented as finite existentially-quantified conjunctions of relations in S applied to variables 
(to variables and constant symbols in C), Then we prove the following new results. 

1. The problems SAT(S) and SATc(S) are both NQL-complete and <;&-complete for NP. 
2. The problems Q-SAT(S), Q-SATc(S), are PSPACE-complete. Letting k = 2, the problem S- 

SAT(S) and S-SATc(S) are PSPACE-complete. 
3.  3 E > 0 for which approximating the problems MAX-Q-SATES) within E times optimum is 

PSPACE-hard. Letting IC =: 2, 3 E > 0 for which approximating the problems MAX-S-SAT(S) 
within E times optimum is PSPACE-hard. 

4. V E > 0 the problems MAX-NSF-Q-SAT(S) and MAX-NSF-S-SAT(S), are PSPACE-hard to 
approximate within a factor of 78' times optimum. 

These results significantly extend the earlier results by (i) Papadimitriou [Pa851 on complexity of 
stochastic satisfiability, (ii) Condon, Feigenbaum, Lund and Shor [CF+93, CF+94] by identifying natural 
classes of PSPACE-hard optimization problems with provably PSPACE-hard €-approximation problems. 
Moreover, most of our results hold not just for Boolean relations: most previous results were done only 
in the context of Boolean domains. The results also constitute as a significant step towards obtaining a 
dichotomy theorems for the problems MAX-S-SAT(S) and MAX-Q-SAT(S): a research area of recent 
interest [CF+93, CF+94, Cr95, KSW97, LMP991. 
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in part by NSF Grant CCR94-06611. Email: hunt,  resacs.  albany. edu. 

under Contract W-7405-ENG-36. 



1 Introduction and motivation 

Over the past thirty years, researchers in theoretical computer science, AI, operations research, combinato- 
rial optimization, and algorithmic algebra have studied variants of satisfiability and constraint satisfaction 
problems. This research was motivated by the facts that (i) such problems have wide ranging applicability 
in modeling real life problem and (ii) thest: problems are also fundamental from a complexity theory stand 
point providing prototypical complete problems for various complexity classes. Specific research topics areas 
studied in these application contexts include: 
1. complexity of 3SAT and in general Boolean constraint satisfaction problems studied in [FV93, CJ+OO, 
JCG97:I 
2. dichotomy type results for decision and optimization versions of Boolean constraint satisfaction problems 
[Cr95, KSW97, LMP99, MH+94], 
3. recent research on the complexity and (non)-approximability of PSPACE-hard quantified and stochastic 
Boolean satisfiability problems [Pa94, Pa85, CF+93, CF+94, MH+94, HSM94,IdMS96]. 

Here, we combine these lines of research and simultaneously study the decision, optimization and counting 
complexity of quantified and stochastic constraint satisfaction problems. Moreover, we do this not only for 
Boolean domains but for finite (2 2) as well as infinite domains. 

We use the following notation for describing constraint satisfaction problems. Throughout this paper, un- 
less otherwise stated explicitly, D is an arbitrary (not necessarily finite) nonempty set; C is a finite set of con- 
stant symbols denoting elements of D; and § and T are (usually finite) sets of finite-arity relationdalgebraic 
on D. An S-clause (a constant free S-clause) is a relation in S applied to variables and constants (to variables 
only respectively). An S-clause is also sometimes referred to as a term or a constraint. An S-formula (a con- 
stant free S-fomzula) is a finite nonempty conjunction of S-clauses (constant free S-clauses respectively). An 
S-formula is satisfable, if each individual S-clause is simultaneously satisfiable. An S-clause (Si ,  Ri) with 
variables Si and the relation Ri is satisfiable, if the assignment to the variables of the S-clause yields a tuple 
that belongs to Ri. 

The above definitions are given when all the variables are existential variables. We now extend the above 
concepts to define quantified constraint satisfaction problems. A quantified S-formula F is of the form F = 
(Qlai,) . (Qmzi,)f(xl,. . . , xn), where the following hold: (i) the variables of F are zi for 1 5 i 5 n; 
(ii) Q1, . . . , Qm E { 3, V}; and (iii) 1 is an §-formula. We say that F is constant-free, when the formula f is 
constant-free. Let us assume that F has the following structure: 

i.e. all odd numbered quantifiers are universal and the even numbered quantifiers are existential4. Then F is 
satisfiable if for all values of 21 there exists an assignment 0 f 2 2 ,  such that for assignments to z3 . . . such that 
F(z1 , .  . . xn) evaluates to true. Alternatively, the formula F is satisfiable iff there exists at least one proof- 
tree for F .  Papadimitriou [Pa851 introduced Stochastic Satisfiability problems. An instance of a stochastic 
satisfiability problem is of the form 

Here R denotes a random quantifier. In other words, we ask if there is a random assignment to q (with 
equiprobable values for 0 and 1) such that there exists an assignment to 22 s.t. for a random assignment to 2 3  

. . . the boolean formula F is satisfied with an expectation of at least a 1/2. Under the notion of equiprobable 
values that the variables can take, this is equivalent to saying if for at least half of the leaves of a proof 
tree the formula evaluates to true. The universal and stochastic quantifiers can be combined the expected 

‘Sometimes we might havc a sequence of existential or universal quantifiers. 
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value threshold can be different from 1/2 and variables need not be assigned 0 or 1 equiprobable. we will 
leave discussion of these extension to the fill paper, See [LMP99] for details on how to incorporate these 
extensions as a part of a general definition. 

We denote the problem of determining the satisfiability of finite conjunctions of relations in S or simulta- 
neous satisfiability of systems of algebraic constraints applied to variables (applied to variables and constant 
symbols in C) by SAT(S) (by SATc(S).) Similarly, MAX-SAT(S) and MAX-SATc(S) denote the prob- 
lems of satisfLing maximum number of simultaneously satisfiable constant free S-clauses and S-clauses with 
constants. 

The problem Q-SAT(S) (Q-SATc(S)) is the problem of determining if a constant-free (an arbitrary) 
quantified S-formula is satisfiable. The problems S-SAT(S) (S-SATc(S)) are similar except that now each 
Qi E (3, R}. here R is called random quant@er. The problems MAX-Q-SAT(S), MAX-Q-SATc(S), 
MAX-S-SAT(S), MAX-S-SATc(S) are the optimization versions of these problems that aim to maximize 
the minimum number of simultaneously satisfiable clauses (or satisfiable with probability greater than 1/2) 
over all partial proof trees. 

In the second class of optimization problems, we are interested in satisisfying the maximum number of for- 
mulas, when instances consist of conjunction of S-formulas. Given a set of S-formulas 4 = { $1 + . - . , $n} the 
problem MAX-NSF-SAT(S) is to find a truth assignment to the variables satisfying the maximum number of 
formulas in 4. Extensions to MAX-NSF-Q-SAT(S) and MAX-NSF-S-SAT@) follow the above schemata 
and are omitted. 

Important Note: Due to space linzitations, the abstract contains only a discussion of the results, ovewiew of 
techniques used and signijkance of the results.. Full proofi and detailed dejnitions are given in the fulI paper 
that can be obtained from the uuthors. ForniuE defiflitions of these problems can be found in [CF+93, CF+94, 
LMP99, H5M94, LMS961. 

Example 1: The generalized CNF satisfiability problems SAT( S) and SAT,(S) generalize the problems 
3SAT, I-3SAT , NAE-3SAT, etc. in [GJ791). For example, let EO(z, y, z )  be the ternary logical relation 
given by {(1,0,0), (0,1,0), ( O , O ,  1)). Then, the problem EXACTLY-1-IN-Ex3-MONO-SAT is the same as 
the problem SAT({ EO}). An instance of the above problem might consist of the set of variables x, yr, x, w 
and the formula F = EO(x, y, x )  A EO(%, y, w )  A EO(z,  20, z ) .  It is easy to see that F is satisfiable by 
setting z = 1 and setting all other variables to 0, Let f be an S-formula with rn clauses and ni literals in 

clause i ,  1 5 i 5 m. The size of f denoted by s i z e ( f )  is given by O( ni). Let C be a set of cllauses 

defined over a set of variables V .  We will use F(C,  V )  to denote the formula obtained by the conjunction of 
clauses in C. By appropriately defining unary, binary and ternary versions of the relation EO, it is pmsible 
to define I-3-SAT problem. 

Our general results in many cases do not depend on the domain being binary or even finite. Similarly, it 
is possible to have finite or infinite constraint relations. This happens naturally, when we deal with algebraic 
constraints where constraints can be specified using algebraic (in)equations. 

i=m 

i=l 

Example 2: Extensions of constraint satisfaction problems to quantified and stochastically quantified con- 
straint satisfaction problems is done by allowing one to use first order quantifiers. Consider again the EO 
relation as defined in Example 1. An instance 1 of Q-SAT(E0) might look like b'x 3y 'v'z 3w F ,  where F 
is as defined above. Then it can be verified that I is not satisfiable. Moreover, Rz 3y Rx 3w F is also not 
satisfiable. On the other hand 'v'x 3y b'x 3wlVq3wz ( ( E O ( x ,  y, w l )  A EO(z,  y, w~)) is satisfiable. 

2 



2 Summary of results 

As mentioned earlier, the focus of this paper is to derive unified technique for characterizing the computational 
complexity and efficient approximability of quantified and stochastic satisfiability problems. For most part, we 
concentrate on the quantified and stochastic versions of the problems; the results for unquantified versions are 
derived in-situ. Specific results obtained in this paper are summarized in Figure 1. The general contributions 
of this paper include the following. 
(1) We formalize an infinite class of quantified and stochastic constraint satisfaction problems. The type 
of problems studied include: decision, counting and optimization versions of these problems. Furthermore, 
combining these with the recent ideas of Littman et. al. we can define more general variants of the problem 
in which we vary the quantifiers and their semantics. We suspect that these infinite classes of problems will 
play a role similar to that already played by their unquantified counterparts in the earlier development of 
complexity theory. Of special note is the formalism of optimization and counting versions of these problems: 
these problems have not be been defined and studied in the literature prior to this paper. Recently there has 
been interest in studying the approximability of PSPACE-hard optimization problems: 
(2) We formalize two simple yet important concepts: local replacementsheductions and relational repre- 
sentability. We derive the basic complexity theoretic properties related to these concepts. Using these con- 
cepts, we propose unified methods for characterizing simultaneously, the decision, optimization, approximate 
optimization and counting complexity of quantified and stochastic constraint satisfaction problems. 

(3) We derive very general sufficient conditions and generic reductions that simultaneously show that the de- 
cision and the approximate optimization problems are hard for their respective complexity classes. There has 
been a recent interest in studying the approximability of PSPACE-hard optimization problems. Our general 
results yield an infinite set of maximization versions of stochastic and quantified constrained satisfaction prob- 
lems that are PSPACE-hard to approximate beyond a certain fixed constant and another infinite set that are 
PSPACE-hard to approximate for any ne, E > 0. Since the influential paper by Papadimitriou and Yannakakis 
on MAX SNP, there has been interest in finding logical/algebraic characterization of NP-hard optimization 
problems that are hard to approximate within different factors. The results for MAX-Q-SAT(S), MAX-S- 
SAT(S) MAX-NSF-Q-SAT($) and MAX-NSF-S-SAT(S) provide similar algebraic characterizations of 
quantified and stochastic PSPACE-hard optimization problems. 

We now discuss some of the specific results obtained in this paper and simultaneously contrast them with 
known results from the literature. These results are summarized in Figure 1. In order to allow for an easy com- 
parison between the results obtained here and the results obtained earlier by other researchers, we summarize 
both the results in the Figure. Moreover, previous results and our results are in 1-1  correspondence in terms 
of the numbering used. So for instance, 301) in Part 1, summarizes the earlier result on non-approximability 
of MAX-Q-3 SAT, our result is given as 3(b) in Part 2.  

Much of this discussion, but by no means all, is limited to finite sets D, since all hardness results given 
here are tight when D is finite. Almost all resulting reductions are local. Thus, they are O(n Zogn) time-, 
linear size-, and O(Zogn) space-bounded. 

2.1 Discussion and Significance 

We discuss some of the above specific results in some detail. Note that some of the results that follow 
as corollaries of our general theorems have also been obtained previously by us or other researchers. Our 
purpose here is to demonstrate the effectiveness of the unified approach and to show that general results 
presented contain much of the earlier results as subsets of the general results. Moreover, the unified approach 
yields a large collection of new results that are reported for the first time in the literature. We make the 
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Part 1: Summary of related results applicable to this paper 

1. [Sc78, CES85, MS81l:The problems 3SAT and 3-COLORABLE GRAPH are NQL-complete. The problems 
EX-3SAT, EXACTLY 1 -Ex3MONOSAT, NAE-Ex3SAT, GOLD'S-MONOTONE-3SAT are <;;,-complete for 
NP. 

2. [Sc78, Pa85l:The problems SAT(S) and SATc(S) are NP-complete and the problems Q-SAT(S) and 
Q-SATc(S) are PSPACE-complete, for all finite sets S of finite-arity Boolean relations such that 
Repc(S)=BOOLEAN-RELATiONSa. The problem S-3SAT is PSPACE-complete. 

(a) [ALM+98, PY911: The problems MAX-3SAT and MAX-NAE-3SAT are MAX SNP-complete. Con- 
sequently, there exists E > 0 for which approximating these two problems within E times optimum is 
NP-hard. 

(b) [CF+93]: 3 E > 0 for which approximating the problem MAX-Q-3SAT within e times optimum is 
PSPACE-hard. 

(c) [CF+943: 3 E > 0 for which approximating the problem MAX-S-3SAT within e times optimum is 
PSPACE-hard. 

(a) [PR93]:The problem MAX-NSF-3SAT is MAX n,-complete. Consequt:ntly for all E > 0 approximating 
this problem within E times optimum is NP-hard. 

(b) [CF+93]:For all E > 0 approximating the problem MAX-Q-FORMULA-:ISAT within e times optimum is 
PSPACE-hard. 

3. 

4. 

Part 2: Summary of the results obtained in this paper 

Let IC 2 2. Let S be a finite set of finite-arity relations on Ck such that Rep(S) = 
following hold: 

- RELATIONS.b Then the 

1. The problems SAT(S) and SATc(S) are both NQL-complete and <;&-complete for NP. 

2. The problems Q-SAT(S), Q-SATc(S), are PSPACE-complete. Letting k = 2, the problem S-SAT(S) and 

3. Let IC 2 2. Let S be any finite set of firiite-arity relations on Ch such that Rep(S)=Ck-RELATIONS. Then, the 
S-SATc(S) are PSPACE-complete. 

following hold: 

(a) The problem MAX-SAT(S) is MAX SNP-complete. Consequently, there exists e > 0 such that approxi- 

(b) 3 e > 0 for which approximating the problems MAX-Q-SAT(S) within E times optimum is PSPACE- 

(c) Letting IC = 2, 3 E > 0 for which approximating the problems MAX-S-SAT(S) within E times optimum 

4. Let S and T be finite sets of finite-arity relations on an arbitrary nonempty set D. Let E > 0. Then, the following 

(a) The problem SAT(S) is O(n  logn) time-, linear size-, and O(2ogn) space-bounded reducible to the 
problem of approximating the problem MAX-NSF-SAT(S) within a factor of E times optimum. Therefore 
whenever the problem SAT(S) is NP-hard, approximating the problem MAX-NSF- SAT(S) within e 
times optimum is NP-hard. 

(b) The problems Q-SAT(S), Q-SAT(S) are O(n logn) time-, linear size-, and O(logn) space-bounded re- 
ducible Eo the problems of approximating the problems MAX-NSF-Q-SAT(S), MAX-NSF-S-SAT(S), 
respectively, within a factor of nt times optimum. 

mating the problem within e times optimum is NP-hard. 

hard. 

is PSPACE-hard. 

hold: 

'This is the terminology used in [Sc78] to say that we can represent all finite arity-boolean relations. 
'Like in Boolean case, this means that all finite arity relations on ck can be equivalently represented as finite existentially- 

quantified conjunctions of relations in S applied to variables (to variables and constant symbols in C). 

Figure 1 : Summary of results for constrained satisfacQon problems. Note that a few of the results have been 
obtained earlier. The purpose here is to show the unified use of our techniques. 



following additional observations about the results summarized above. 
First, note that several simple but fundamental properties of our model, that generalize those of previous 

models such as the generalized CNF satisfiability problems, the constrained sar'isfiability problems, and the 
classes of graphical problems ECC and LCC of [Sc78, FV93, JCG97, CJ+OO, JCG971, respectively. 
1, Most of our constructions hold, for domains D of arbitrary not necessarily finite cardinality. Moreover, 
they hold for problems expressed in terms of fairly arbitrary sets of algebraically-expressed constraints S on 
D. In particular, these sets of constraints also need not be finite. 
2. Most of our constructions use the Boolean operator and, only in the sense of simultaneously satisfiable 
over the domain D and given set of constraints from S. 
3. All of our constructions are explicitly expressed as strongly-local graph /hypergraph replacements. This 
guarantees their extensibility. 

Second, the problems MAX-Q-SAT(S) and MAX-S-SAT(S) are PSPACE-hard (as opposed to NP- 
hard) to approximate beyond a fixed constant (a separate constant for each problem). Moreover MAX-NSF- 
Q-SAT(S) and MAX-NSF-S-SAT(S) are PSPACE-hard within any n' factor. Thus our results provide nat- 
ural algebraic classes of optimization problems that can be potentially used for proving non-approximability 
of PSPACE-hard optimization problems. The un-quantified version of these problems have been used in the 
past to derive a number of non-approximability results. Similar results can be now obtained in a game theo- 
retic setting. For e.g. it is possible to define a game theoretic version of the MAX-CUT problem: our results 
how that it is PSPACE-hard to approximate. 

Third, except for results in [FV93, JCG971 on when the problems SAT(S) are polynomially solvable and 
the well-known results that, the problems ~'-COLORABLE-GRAPM and MAX-k-COLORABLE-GRAPH are 
NP- and MAX SNP-complete, respectively, very few general hardness results were known previously for sets 
of relations on sets D such that 3 5 ID1 < 00. 

Our results extend earlier results and/or answer open problems in (i)Condon, Feigenbaum, Lund and 
Shor [CF+93, CF+94] to identify natural classes of PSPACE-hard optimization problems with provably 
PSPACE-hard eapproximation problems, (ii) work of Papadimitriou [Pa851 on stochastic satisfiability prob- 
lems (where only S-3SAT was considered) and (iii) Schaefer [Sc78] on quantified generalized satisfia- 
bility problems extending it to non-Boolean domain and providing tighter reductions). Progress is made 
on the approximability of the problems MAX-S-SAT(S) and MAX-Q-SA'I'(S): a significant step to- 
wards obtaining a dichotomy theorems for these problems. recently there has been substantial interest 
in obtaining dichotomy results for decision, optimization and counting versions of satisfiability problems. 
[CF+93, CF+94, Cr95, KSW97, LMP991. While (non)-approximability of NP-hard optimization problems 
has received a lot of attention over the recent years, approximability of PSPACE-hard optimization problems 
has only been studied by us [HSM94, MH+94] for quantified and succinctly specified problems, by Condon, 
Feigenbaum, Lund and Shor [CF+93, CF+94] for quantified and stochastic satisfiability problems and by 
Lincoln, Mitchell and Scederov in the context of linear logic tLMS961. 

3 Overall technique 

Our methodology is based upon the following two simple yet powerful concepts. 
1. Relational Representability: As the name suggests, letting S and T be sets of relationdalgebraic 
constraints on a common domain D, the intuitive concept that the relations in S are expressible (or extending 
the terminology from [Sc78] are representable) by finite conjunctions of the relations in T. This is formalized 
in Definition 3.1 below: 

Definition 3.1 1. We denote the set of allfinite-arity relations on a non-empty set D logically equivalent 
tojinite existentially-quantified conjunctions of relationdalgebraic constraints in S applied to variables 
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(to variables and constant symbols in C) by Rep( S )  (by R e p c  (S).) 

2. We say that a relation S is, and a set of relations S are, representable (constant-free representable) by a 
set of relations/algebraic constraints T i fand only $5' E Repc (T) (S E R e p ( T ) )  and S C R e p c  (T) 
(S C R e p ( T ) ,  respectively) 

Note: Throughout this paper Rep(  S) denotes the set of relations expressible by constant-free S-formulas; 
and R e p c  (S) denotes the set of relations expressible by S-formulas with constants from C. 

Variants of the concepts of Definition 3.1 on the relative representability of ordered-pairs (S, T) of sets of 
relations, henceforth denoted collectively by relational representability, are well known, especially in math- 
ematical logic. Previously in complexity theory, relational representability as used here and the individual 
constraint satisfaction problems studied have usually been restricted to finite sets S of finite-arity relations on 
finite sets D ,  generally the set (0, l}. Additionally, their uses are generally restricted to formulas or (occa- 
sionally also to quantified formulas), [Hogr/, CES85, GJ79, JCG97, Sc781. In contrast, our results apply with 
the exception of the problems S-SAT@) ta both finite and infinite domains and sets of relations/constraints. 

-I__ 

For any set D and finite sets of finite-arity relaTons S and T on D, if S C Rep(T) (or S c Repc(T)) ,  then 
1. the problem SAT(S) is l-strongly local reducible to the problem SAT(T) (or SATc(T)), 

2. the problem Q-SAT(S) is efficiently reducible to the problem Q-SAT(T) (or Q-SATc(T)), and 

3. (when D is finite) the problem S-SAT@) is efficiently reducible to the problem S-SAT(T) (or S-SATc(T)). 

4. Moreover often, the reductions of items 1-3 can also be used to relate the relative complexities of the associated 
MAX- problems. 

Figure 2: Meta-Result 2. Relational Representability and Strongly-Local Reductions. 

2. Local Replacements: Let k 2 1. The second basic component of our methodology consists of the 
formalization and systematic investigation of the properties of the classes of k-strongly-local and k-strongly- 
local-enforcer replacements and reductions, especially with respect to constraint satisfaction problems. The 
basic idea of local reductions is not new and can be traced back to [GJ79] for decision problems, and re- 
cently in [HSM94, KSW97, Cr95] for optimization problems. The new contribution of this and companion 
papers is to formalize the complexity theory properties of such reductions. In contrast, previous researchms, 
e.g. [GJ79, CESSSI, have discussed e8cient reductions by local replacement; but they have not gone f i r  in 
formalizing, or in characterizing the complexity-theoretic properties oJ their concepts. 

Let k 2 1. Let D1,Dz be nonempty sets. Let S with IS1 = p and T with IT1 = q be finite nonempty sets 
of finite-arity relations on D1 and D2, respectively. We define k-strongly-local and k-strongly-local-enforcer 
reductions of the problem SAT@) to the problem SAT(T) to be k-strongly-local and k-strongly-lucal-enforcer 
replacements from the set of all S-formulas to the set of all T-formulas, that are also reductions Intuitively, 
'dk, in k-strongly-local replacements we have templates, to be treated as macros', with the same template for 
each variable and distinct templates for each S-clause. Details about macro expansions and the the way the 
variables are replaced depend very simply on the value of k .  Figure 2 shows how local replacementlreductions 
and relational representability can be combined to obtain efficient reductions between classes of satisfiability 
problems. 
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